In our research we collaborate with several other groups in Spain and Europe. All these groups carry on research in the fields of carbon  nanotechnology:


  • Prof. Maurizio Prato. Università di Trieste. Italy
  • Prof. Alberto Bianco. CNRS, Strasbourg, France
  • Prof. Kostas Kostarelos. The University of Manchester. United Kingdom.
  • Prof. Laura Ballerini. SISSA (Scuola Superiore di Studi Avanzati). Trieste, Italy
  • Prof. Bengt Fadeel. Institute of Environmental Medicine (IMM), Stockholm, Sweden.
  • Prof. Peter Wick. Empa, Head of the Laboratory for Particles-Biology Interactions. EMPA. St. Gallen, Switzerland. 
  • Prof. Fabio Benfenati. Director, Center for Synaptic Neuroscience and Technology, The Italian Institute of Technology. Genova, Italy
  • Prof. Alain Pénicaud. CNRS, Centre de Recherche Paul Pascal (CRPP), University Bordeaux, France.
  • Dr. Frédéric Taran, CEA-Saclay, Gif-sur-Yvette, France
  • Dr. Didier Beloin-Saint-Pierre. Swiss Federal Laboratories for Materials Science and Technology (EMPA), St. Gallen, Switzerland.
  • Prof. Mauro Tretiach, Università di Trieste, Italy
  • Prof. Michele Pavone. Università degli Studi Federico II di Napoli, Italy.
  • Grupo Antolín, preparation of graphene dispersions 


Works derived from these studies

  1. L. Fusco, M. Garrido, C. Martín, S. Sosa, C. Ponti, A. Centeno, B. Alonso, A. Zurutuza, E. Vázquez, A. Tubaro, M. Prato, M. Pelin, Skin irritation potential of graphene-based materials using a non-animal test, Nanoscale, 12, 610-622, 2020.
  2. C. Backes et al, Production and processing of graphene and related materials, 2D Mater., 7, 022001, 2020.
  3. L. Di Cristo, B. Grimaldi, T. Catelani, E. Vázquez, P. Paolo Pompa, S. Sabella, Repeated exposure to graphene oxide by aerosol Mediates autophagy inhibition along with inflammation in a 3D human airway model, Mater. Today Bio, 100050, 2020.
  4. R. Rauti, N. Secomandi, C. Martín, S. Bosi, F. P. U. Severino, D. Scaini, M. Prato, E. Vázquez, L. Ballerini, Tuning Neuronal Circuit Formation in 3D Polymeric Scaffolds by Introducing Graphene at the Bio/Material Interface. Adv. Biosys., 1900233, 2020.
  5. A. Dominguez-Alfaro, N. Alegret, B. Arnaiz, J. M. González-Domínguez, A. Martin-Pacheco, U. Cossío, L. Porcarelli, S. Bosi, E. Vázquez, D. Mecerreyes, M. Prato, Tailored Methodology Based on Vapor Phase Polymerization to Manufacture PEDOT/CNT Scaffolds for Tissue Engineering, ACS Biomater. Sci. Eng., 6, 2, 1269-1278, 2020
  6. S. Malanagahalli, D. Murera, C. Martín, Ha. Lin, N. Wadier, H. Dumortier, E. Vázquez, A. Bianco, Few Layer Graphene Does Not Affect Cellular Homeostasis of Mouse Macrophages, Nanomaterials, 10(2), 228, 2020
  7. F. Candotto Carniel, L. Fortuna, M. Nepi, G. Cai, C. Del Casino, G. Adami, M. Bramini, S. Bosi, E. Flahaut, C. Martín, E. Vázquez, M. Prato, M. Tretiach, Beyond graphene oxide acidity: Novel insights into graphene related materials effects on the sexual reproduction of seed plants, J. Hazard. Mater., 393, 122380, 2020
  8. D. Zanelli, F. Candotto Carniel, M. Garrido, L. Fortuna, M. Nepi, G. Cai, C. Del Casino, E. Vázquez, M. Prato, M. Tretiach. Effects of Few-Layer Graphene on the Sexual Reproduction of Seed Plants: An In Vivo Study with Cucurbita pepo L. Nanomaterials, 10, 1877. 2020
  9. Few layer graphene does not affect the function and the autophagic activity of primary lymphocytes. Nanoscale. 11,  10493. 2019
  10. An Increase in Membrane Cholesterol by Graphene Oxide Disrupts Calcium Homeostasis in Primary Astrocytes. Small. 15, pp. 1900147. 2019
  11. Degradation of Single-Layer and Few-Layer Graphene by Neutrophil Myeloperoxidase. Angew. Chem. Inter. Ed. 57 - 36, pp. 11722. 2018. 
  12. Biotransformation and Biological Interaction of Graphene and Graphene Oxide during Simulated Oral Ingestion. Small., 14, pp. 1800227 2018
  13. Differential effects of graphene materials on the metabolism and function of human skin cells. Nanoscale. 10, pp. , 11604. 2018.
  14. Graphene Oxide Upregulates the Homeostatic Functions of Primary Astrocytes and Modulates Astrocyte-to-Neuron Communication. Nano Letters. 18,   pp. 5827. 2018
  15. Graphene and graphene oxide induce ROS production in human HaCaT skin keratinocytes: the role of xanthine oxidase and NADH dehydrogenase. Nanoscale. 10, pp. 11820. 2018
  16. Safety Assessment of Graphene-Based Materials: Focus on Human Health and the Environment. ACS Nano. 12, pp. 10582. 2018.  
  17. Differential cytotoxic effects of graphene and graphene oxide on skin keratinocytes. Scientific Reports. 7, pp. 40572. 2017
  18. Few-Layer Graphene Kills Selectively Tumor Cells from Myelomonocytic Leukemia Patients. Angew. Chem. Inter. Ed. 56, pp. 3014. 2017
  19. Promises, facts and challenges for graphene in Biological Applications. Chem. Soc. Rev. 46, pp. 4400. 2017
  20. Detection of Endotoxin Contamination of Graphene Based Materials Using the TNF-a Expression Test and Guidelines for Endotoxin-Fee Graphene Oxide Production. PloS One. 11, pp. e0166816. 2016
  21. Graphene Oxide Nanosheets Disrupt Lipid Composition, Ca2+ Homeostasis And Synaptic Transmission In Primary Cortical Neurons. ACS Nano. 10, pp. 7154. 2016.
  22. Graphene Oxide Nanosheets Reshape Synaptic Function in Cultured Brain Networks. ACS Nano. 10, pp. 4459. 2016. 
  23. Graphene-Based Interfaces Do Not Alter Target Nerve Cells. ACS Nano. 10, pp. 615. 2016
  24. Interaction of graphene-related materials with human intestinal cells: an in vitro approach. Nanoscale. 8, pp. 8749. 2016.
  25. Surface Area of Carbon Nanoparticles: A Dose Metric for a More Realistic Ecotoxicological Assessment. Nano Letters. 16, pp. 3514. 2016
Ongoing collaborations
Ball mill
NanoChemistry Group
Exfoliated Graphene
Graphite exfoliation using melamine
PhD student Cristina and Bachelor Alicia making science!
UCLM Albacete
PhD student Ana taking some fluorescence measurements
Maribel is doing intriguing experiments!
Obtaining nice hydrogels